

SAGAR CEMENTS LIMITED GUDIPADU UNIT

CII National Award for Excellence in Energy Management 2023: 13- 15 September 2023, HICC, Hyderabad

Team members

- 1. V V Prasad/GM-Operations
- 2. K Jagadeeshwara reddy/ Manager

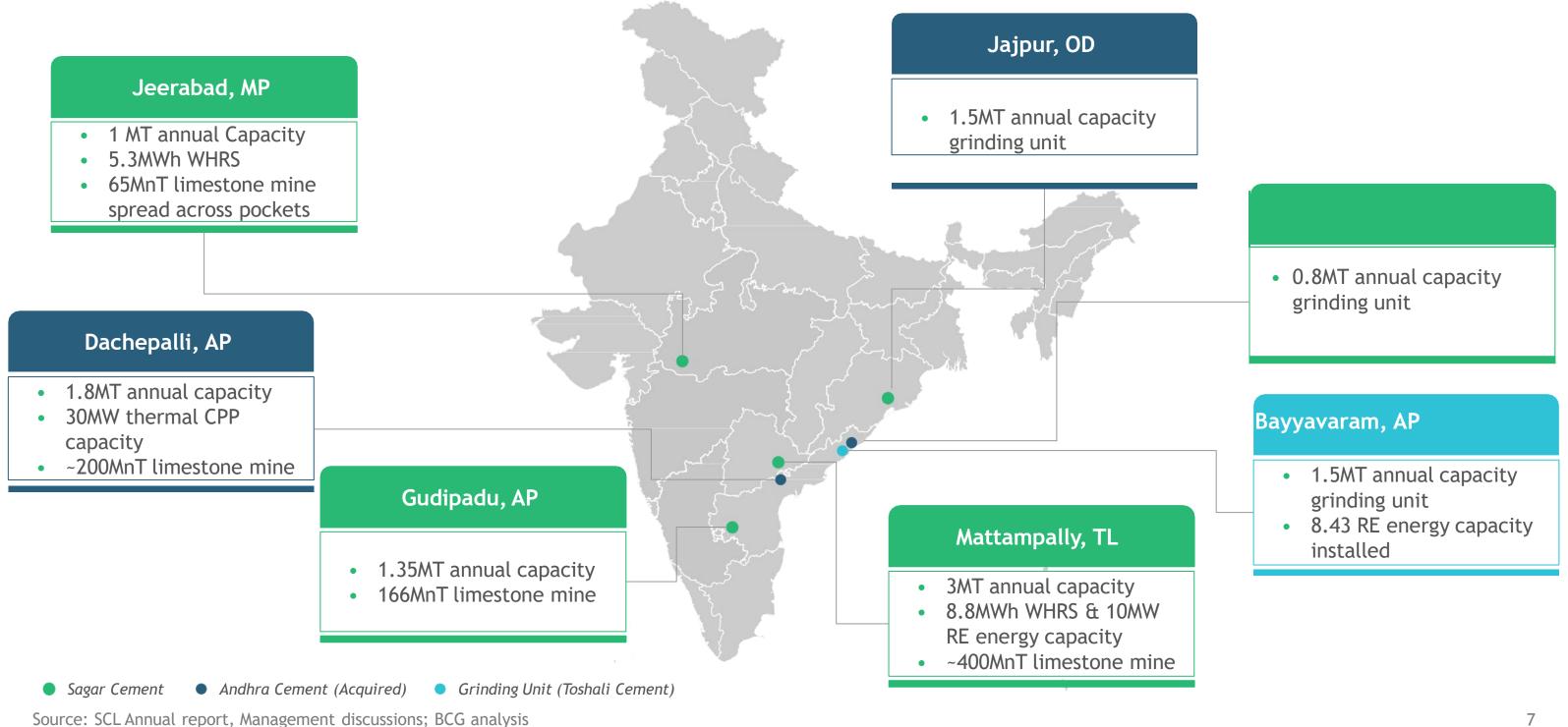
Introduction

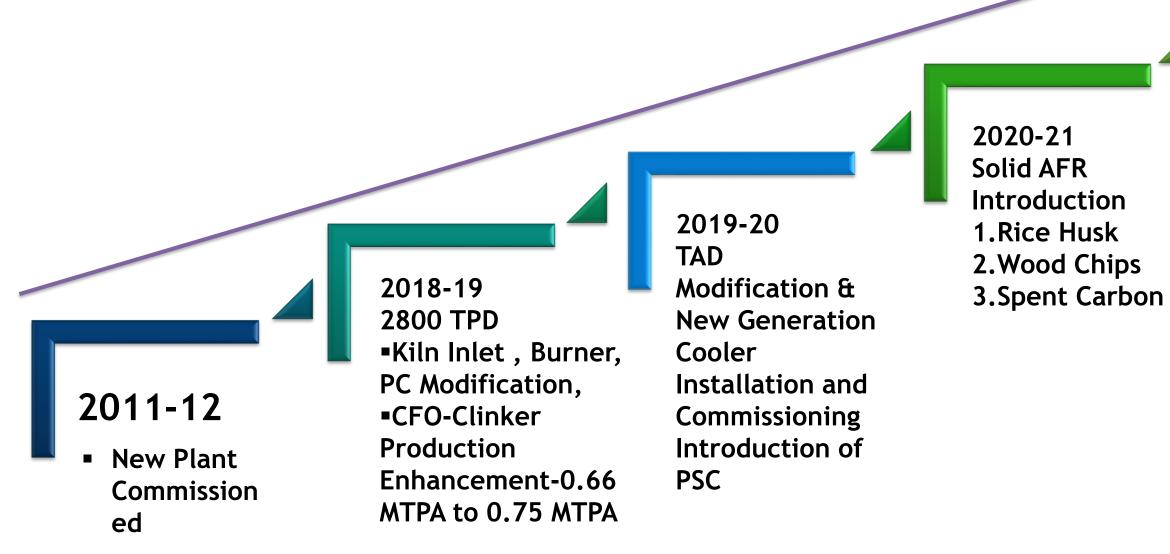
Sagar Cements LTD- Gudipadu (Acquired from BMM cements in April-2015)

Clinker Capacity :1.0 mtpa (3000 TPD) & Cement Capacity – 1.35 mtpa

Captive power plants (CPP) CPP 25 MW Mines with reserve of 129.16 MT.

Product spectrum


- a. Ordinary Portland cement (OPC) includes 43 & 53 grade
- b. Portland Pozzolana Cement (PPC) (GreenPro certified)
- c. Portland Slag Cement (PSC) (GreenPro certified)
- d. Special grade cement Insta power cement (IPC)


Sagar Cements Over View

Context | SCL achieved >10 MTPA capacity with the acquisition of ACL Potential to unlock value through initiatives to drive future growth

MILESTONES

2000 TPD

2022-23 Liquid AFR Introduction **CFO-Clinker** Production **Enhancement-**0.75 MTPA to1.0 MTPA

Specifications of Major Sections

Particulars	Design Parameters	Particulars	Details	Particulars
			Promac-AVM-320	Preheater
Make & Model	M/s. Promac & TI PM	Capacity	90 TPH	Model
	16x15	Grinding table f	3200 mm	Calciner diameter
_		Roller diameter	2240 mm	TA Duct diameter
Туре	Impact Crusher	No. of rollers	3	TA Duct length
Capacity				Preheater Fan
Capacity	350 TPH	Gear box make	SEISA Gear Ltd.,-Japan	Model
Feed Material	Lime Stone	Model	BPP125V	Make
		Ratio	1/29.02	Capacity
		Power	1500 KW	Inlet temp.
Inlet feed Size	1000 x 10000 x 1000	Input speed	960	Motor
	mm	Output speed	33.08	Speed
		Classifier type	SNU	Kiln
Product Size	- 60 mm	<i>,</i> .		Make /Capaciyu
11000013120	- 80 1111	Rotor diameter	2400mm	Diameter
Motor Power	500 kW	Motor	55 Kw	Length
		Output speed	196 rpm	Slope

Particulars	Details
Clinker Cooler	
Make	FLS Cross Bar cooler
Туре	CB 10 x 39 with ABC inlet
Capacity	3000 TPD
Grate area	65.2 Sq m
Cooling fan -ABC inlet	132 kW
Chamber Cooling fans	2 x110 Kw
Chamber Cooling fans	2 x132 Kw
Chamber Cooling fans	2 x160 Kw
Clinker Breaker	Hydralic roller breaker
Model	MF-310.
Motor	18.5 Kw-for Tr-1
	22 Kw-for Cr-1
	22 Kw-for Cr-2

Particulars	Design Parameters
Mill Type	Ball mill
Make	Promac
Гуре	Closed circuit
Capacity TPH	150
Mill length (m)	17.50
Mill Dia (m)	4.40
Mill speed (RPM)	14.80
Aotor power (kW)	2500 x 2
ligh efficiency classifier Make	Promac
Classifier model	Dynamic

Particulars	Design Parameters				
Make	Promac				
Туре	AVM-200				
Capacity TPH	23 TPH				
Grinding table ϕ	2000 mm				
Roller diameter	1400 mm				
No. of rollers	3				
Gear box make	ELECON				
Type-size	KPAV-80				
Ratio	20.70:1				
Power	300 KW				
Input speed	980				
Output speed	47.26				
Classifier type	Dynamic				
Rotor diameter	2000 mm				
Motor	37 KW				
Output speed	300				

S	Details
	Six Stage suspension(DDF/RSP) Pre-heater
	3470 mm
	2100 mm
	64 M
	KBZ-180-800010-252(DIDW)
	REITZ india Ltd.,
	450000 CUM./Hr.
	400oc
	1500 Kw
	992
	Promac/3000TPD
	3.4 Mtr
	53 Mtr
	3.50%

MANAGEMENT SYSTEMS

Sagar Cements Ltd., Gudipadu unit is IMS certified;

- **Quality Management System** : ISO 9001-2015 \triangleright
- Environmental Management System : ISO 14001 2015 \geq
- Occupational Health & Safety : ISO 45001 - 2018
- **Energy Management System** : ISO 50001 - 2018

IMS allows the management team to create one system that can help to effectively and efficiently deliver organizational goals.

MANAGEMENT SYSTEM CERTIFICATE

Certificate no.: 10000423007-MSC-RvA-IND

Initial certification date 02 April 2021

Valid: 02 April 2021 – 01 April 2024

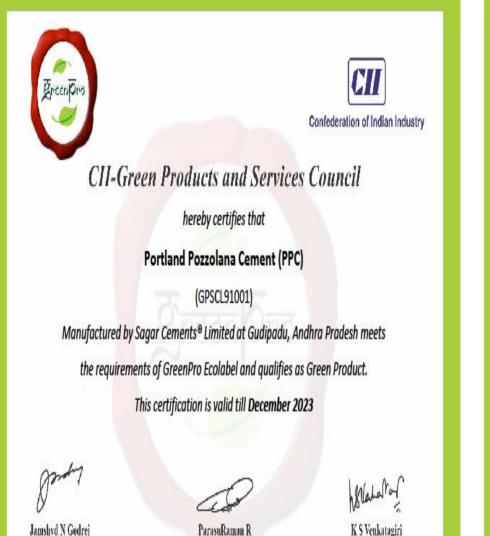
This is to certify that the management system of Sagar Cements (R) Limited

Gudipadu Village & Post, Yadiki Mandal, Anantapur District - 515 408, Andhra Pradesh, India

has been found to conform to the Energy Management System standard: ISO 50001:2018

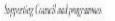
This certificate is valid for the following scope: Manufacture of clinker and cemen

Place and date: Barendrecht, 06 April 2021

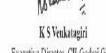


For the issuing office: DNV - Business Assurance Zwolseweg 1, 2994 LB Ban

Lack of fulfilment of conditions as set out in the Certification Agreement may render this Certificate invali


ACCREDITED UNIT: DNV GL Business Assurance B.V., Zwolseweg 1, 2994 LB, Barendrecht, Netherlands - TEL: +31(0)102922689. www.dnvgl.com/assurance

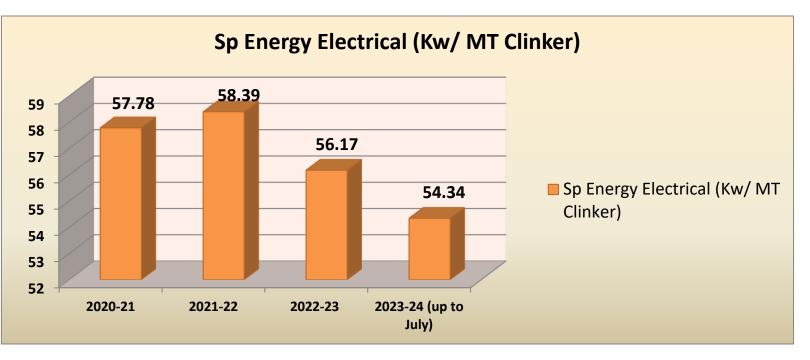
Management System - Certification

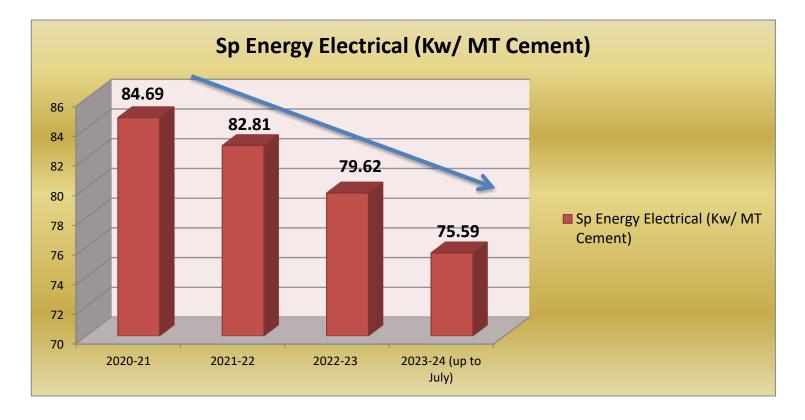

ParasuRaman R Chairman, CII-Green Products & Services Council Executive Director, CIL-Godrej GBC

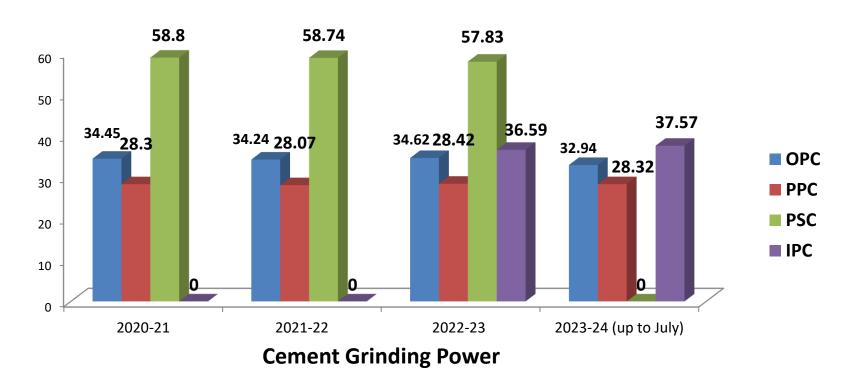
ParasuRaman R Chairman, CII-Green Products & Services Council

Jamshvd N Godrej

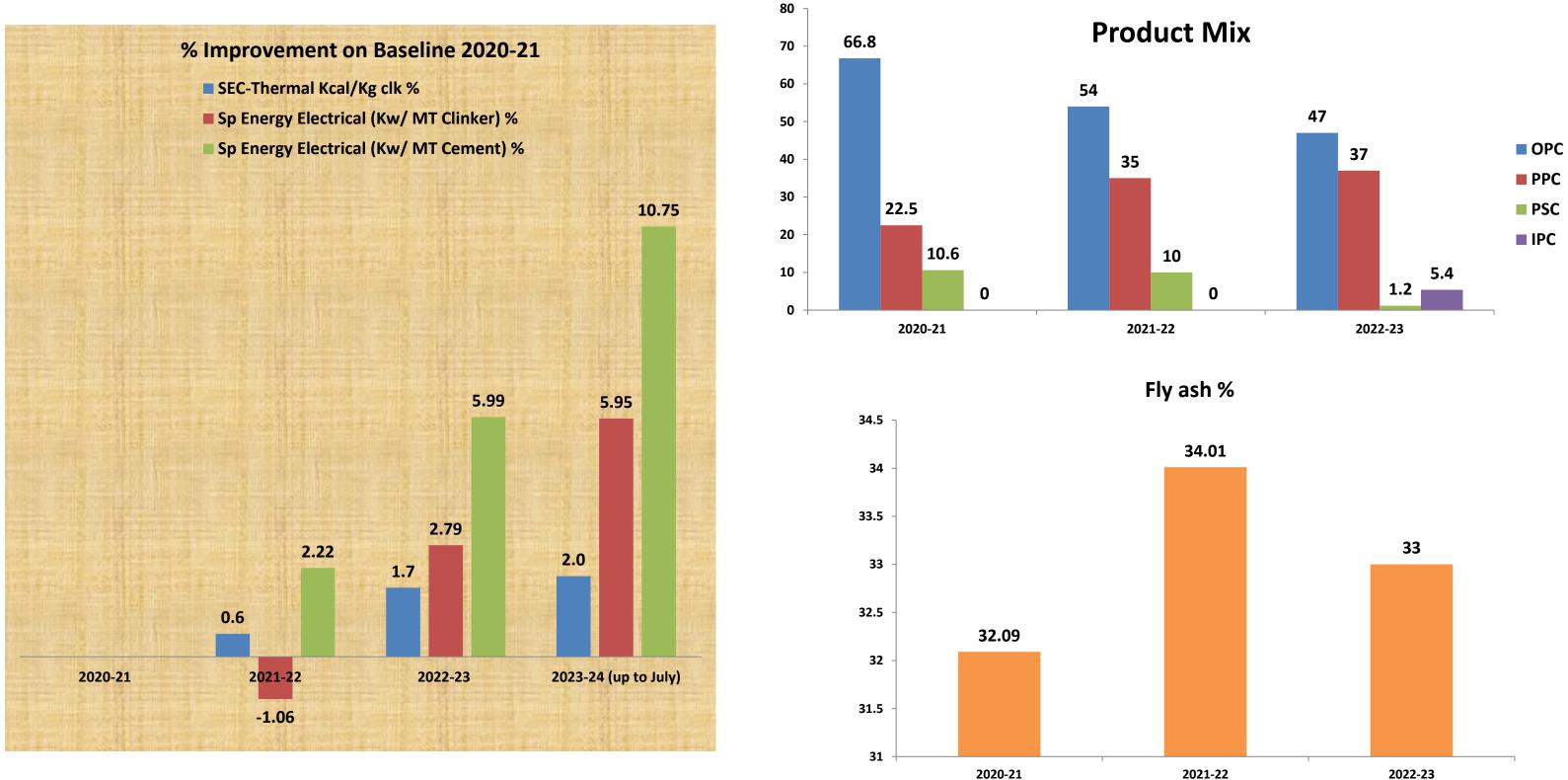
Chairman, CII-Godrej GBC

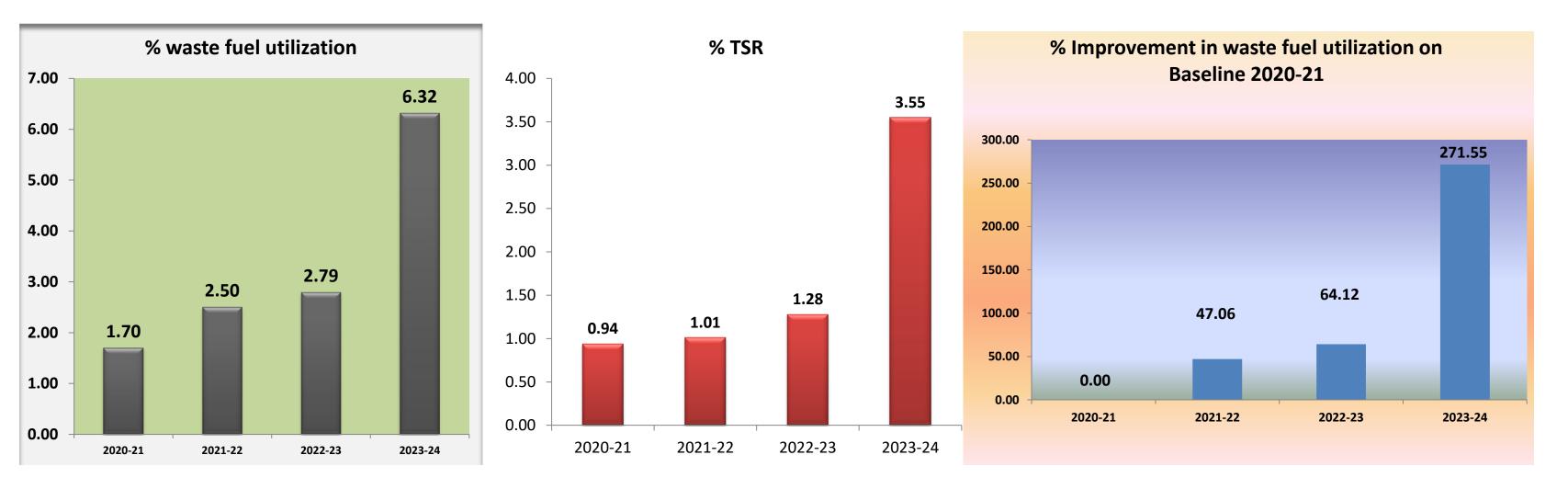





CONTRANY RATING OF THE OF THE NEW OF THE NEW OF THE BODREJ GREEN BUSINESS CRITTRE NOL ¥ Sagar Cements (R) Ltd. Gudipadu GOLD 2020 - 2023

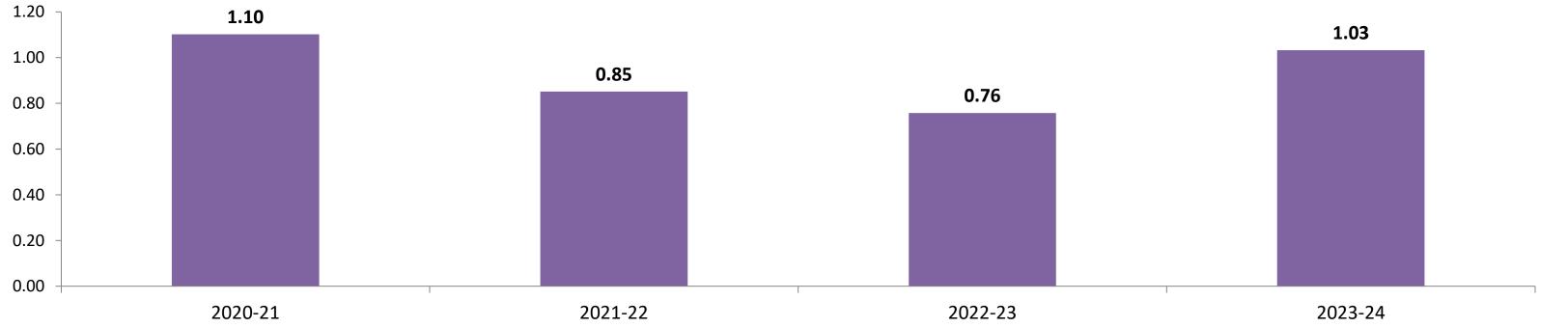
Reduction in energy consumption




Reduction in energy consumption

2020-21

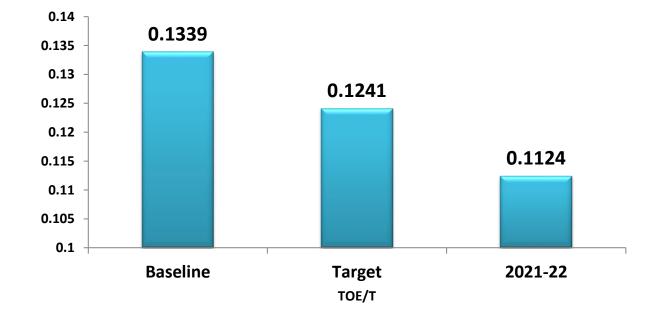
Waste Utilization management



Sr.No	Year	DOLACHAR	SPENT CARBON (Schedule 28.3)	ORGANIC RESIDUE (Schedule 28.1)	ORGANIC WASTE (Schedule 35.3)	WOODEN CHIPS / POWDER	GCV	Waste As % of Total fuel
1	2020-21	0	1219.00				2583	1.7
2	2021-22	1013.00	1192.00				2259	2.5
3	2022-23	1524.00	499.16	787.00	1285.00	21.84	2498	2.79
4	2023-24	380.00	80.00	1285.00	1030.00		2232	6.32

Waste Utilization management

% waste Raw material utilization



Alternative Raw Material	UOM	2023-24	2022-23	2021-22	2020-21	Replaced Material
RED MUD	TONS	883	0	6834	9336	Bauxite
BED ASH	TONS	0	1628	161	2135	Bauxite
DOLAMITE	TONS	1115	1465	2441	NILL	
CHROME SLUDGE (WET) (38.1)	TONS	3118	8207	NILL	NILL	Bauxite
Lime stone consumption	TONS	453924	1364157	1030923	948253	
Natural raw material(Additives)	TONS	36531	116118	67966	80881	
Alternative Raw material	TONS	5116	11300	9436	11471	
Alternative Raw material %	TONS	1.03	0.76	0.85	1.10	

Plant Achieved & Bench markings-CII

S.No	Section	Unit	Specific energy Consumption	Bench markings-CII
1	Crusher	Kwh/MT Limestone	1	0.57
2	Raw Mill	Kwh/Raw meal	16.4	10.64
3	Kiln	Kwh/MT Clinker	18.5	15.45
4	Coal mill	Kwh/MT Coal	32.6	33.89
5	Specific heat consumption	Kcal/Kg clinker	682	675
6	Clinker power-Six Stage	Kwh/MT Clinker	55.5	42.6
7	Green House gas emissions	Kg CO2/MT Cement	642	493

Total 7114 No's of EScerts achieved for PAT cycle-V

Targets In short term & Long Term

	INTERNAL BENCH MARKING										
S.No	Objectives	KPIs	Unit of measurement	2019-20	2020-21	2021-22	2022-23	Target FY 2023-24			
		Raw mill-1 production	ТРН	102.72	102.15	105.20	112.44	110.00			
	Ensuring relaibility in	Raw mill-2 production	ТРН	102.82	102.42	105.90	106.64	110.00			
1	production	Kiln production	ТРН	126.01	121.20	125.10	126.89	127.00			
		Coal mill production	ТРН	14.45	15.64	17.20	18.66	19.00			
2	Cost reduction in	Refractory consumption	Kg/Ton of clinker	0.479	0.482	0.505	0.191	0.190			
2	production	Diesel consumption	KL	41	46.43	23.5	25.52	23.00			
		Raw mill-1 specific power consumption	KWH/Ton of Material	19.38	19.07	20.14	18.91	10.50			
		Raw mill-2 specific power consumption	KWH/Ton of Material	18.57	19.38	19.60	18.57	- 18.50			
		Kiln specific power consumption	KWH/Ton of Material	23.39	23.78	22.80	22.25	22.00			
3	Energy Conservation	Coal mill specific power consumption.	KWH/Ton of Material	38.70	33.74	33.72	31.62	32.50			
		Specific heat consumption	K.cal/Kg Clinker	689.4	695.6	690.6	682.7	682.0			
		Specific power consumption upto clinker	KWH/Ton of Material	57.38	57.78	58.39	56.17	55.5			
4	Environment	G.H.G Emmission (Scope-1,2,3)	Kg.Co2/T.Cementisious	817	803	789	775	700			
5	100 % safe work with zero accidents	Reporting of Accidents / Incidents	Nos.	0	0	0	0	0			

Roadmap for reduction by year 2030 and finally becoming Net Zero by year 2050

Identifying Source

Identify bye-products:

- Increased use of de-carbonated 1. raw materials, Target - 2% by 2030 and 5% by 2050
- 2. To collaborate with authorities, policy makers to develop & put in place the infrastructure preprocessing of waste materials.
- To up-skill plant team so that 3. they confident and comfortable in using the waste without *impacting the product quality* and system efficiency
- To take support from domain 4. experts and other companies, countries who are ahead in the use of waste.

Developing Infrastructure

Increased use of Alternate fuels for pyro process. 20% by 2030 and 50% by 2050

- To develop cultural change and 1. infrastructure to use waste in the kiln & Preheater.
- To collaborate with waste 2. generating industries to develop standard operating procedures (SOP) to achieve consistency in chemistry and other parameters of the waste that are being generated and are being supplied
- To develop and install the necessary 3. infrastructure at the plant premises for unconstrained use of waste materials.
- Promoting the use of blended 4. cements

Administration Control

- Conducting the Review Meetings for target setting of AFR and Alternative Raw material Usage
- Installing on-site solar power 2. plants of additional capacity.
- Increased ratio of Green Energy. 3. 10% by 2030 and 50% by 2050
- Use of EV, Fuel cell, hybrid 4. vehicles for material transport. 30% by 2030 and 100% by 2050.
- Replacing the identified low 5. efficiency process systems by conducting CFD studies.
- upgrade the plant machinery to 6. accept waste materials without constraints. Installation of precombustion chamber etc.

Year	No Of Energy Saving Project	Investment (INR Million)	Electrical Savings (MKwh)	Thermal Savings (Million Kcal)	Impact on SEC/SHC
FY 2020-21	6	0.3	0.09		0.8 Kwh/Mt cement
FY 2021-22	7	0.54	0.40		1.03 KWh/MT Cement
FY 2022-23	4	0.26	0.17	1200	0.45 Kwh/Mt cement

Energy saving Initiatives

Year	Sr.no	Project	Year of Implementation	Annual Energy consumption (before),KWH	consumption(bef	Annual Energy consumption(after),KWH	Annual Energy consumption (after),TOE	Annual Energy Saving in Lakh kWh	Annual Energy Saving in toe	Energy Cost (Rs per kWh)	Investment , Lakh Rs
	1	CPP-CONTROL LOOP DEVELOPED CEP SPEED THROUGH CRT LEVEL	20-21	411840.0	132.1	293040.0	94.0	1.2	38.1	7.5	0.0
	2	CPP-HOT WELL TR PUMP VFD (4KW)	20-21	15840.0	5.1	11642.4	3.7	0.0	1.3	7.5	0.4
	3	Installed VFD for Cement Mill Exhaust Bag Filter Fan	20-21	161642.0	51.9	132084.6	42.4	0.3	9.5	7.5	1.5
FY 20-21	4	Installation of VFD for Raw Mill Silo Top Bag filter	20-21	76465.3	24.5	31860.5	10.2	0.4	14.3	7.5	1.5
	5	CPP-ACW PR REDUCED 3.7 Kg/sqcm from 4.0 kg/sqcm (While operating low ash coal) (7400 Hrs)		799200.0	256.4	710400.0	227.9	0.9	28.5	7.5	0.0
	6	IE2 to IE3 replacement	20-21	300986.0	96.6	293628.0	94.2	0.1	2.4	7.5	3.1

Energy saving Initiatives

Year	Sr.no	Project	Year of Implementation	Annual Energy consumption (before),KWH	-	Annual Energy consumption (after),KWH	-	Annual Energy Saving in Lakh kWh	Annual Energy Saving in toe	Energy Cost (Rs per kWh)	Investment, Lakh Rs
	1	CPP-BC 4 BELT LIGHTING WHEN EVER REQUIRED ON / OFF	21-22	3784.3	1.2	1892.2	0.6	0.0	0.6	7.5	0.0
	2	CPP-OPTIMISATION OF ACW POWER THROUGH MANUALLY CONTROLED ACW WATER TO HEAT EXCHANGER OF BED ASH COOLER ON REQUIREMENT (While operating low ash coal)(580Hrs)	21-22	55680.0	17.9	45240.0	14.5	0.1	3.3	7.5	0.0
	3	CPP-Chp Dust Extraction Blower motor Rpm Reduced 1480 to 960 (45 kw to 37 kw)	21-22	20000.0	6.4	12000.0	3.8	0.1	2.6	7.5	0.3
FY 21-22	4	Rabh individual chambers high &low level sensors arranged and Rabh individual chambers high &low level sensors arranged and	21-22	59483.9	19.1	7435.5	2.4	0.5	16.7	7.5	5.2
	5	Reduction of PC and KC Coal conveying RPM as per phase density	21-22	409533.6	131.4	312396.8	100.2	1.0	31.2	7.5	0.0
	6	Arresting of false air in both raw mills	21-22	6744648.0	2163.7	6550177.0	2101.3	1.9	62.4	7.5	0.0
	7	Seal air fan discharge duct size of Both VRMs reduced from 16" to 8"	21-22	242038.0	77.6	210090.2	67.4	0.3	10.2	7.5	0.0

Energy saving Initiatives

Year	Sr.no	Project	Annual Energy consumption (before),KWH	Annual Energy consumption(b efore),TOE	Annual Energy consumption(after),K WH	Annual Energy consumption(aft er),TOE	Annual Energy Saving in Lakh kWh	Annual Energy Saving in toe	Energy Cost (Rs per kWh)	Investment , Lakh Rs
	1	VFD for clinker silo top dust collector	229824	19.76	207184	17.81	0.2264	1.94	7.5	2.6
FY 2022-23	Z	VFD for RAW Mills surge bin dust collector	155952	13.41	144032	12.38	1.192	1.02	7.5	2.13
	3	Arresting of false air in Raw mill-2 from 31% to 27%	98496	8.47	66356	5.70	0.32	2.76	7.5	6
		Municipal and plastic waste feeding in pre heater 4th floor				120		120	7.5	15.38

Major Encon Projects Planned in 2023-24 & 2024-25

Year	Energy Saving Project	Investment (INR Million)	Electrical Savings (MKwh)	Thermal Savings (Million Kcal)	Impact on SEC/SHC
	2nd cyclone and 3rd cyclone modification	3.5	0.46		0.45 Kwh/ton of material
	High efficiency separator for Raw mill	0.43	0.65		1 Kwh/ton of material
	High efficiency fan for Raw mill	0.3	0.17		0.53 Kwh/ton of material
FY 2023-24	Cyclone Modification	0.2	0.26	-	0.34 Kwh/ton of mat
	Installation of Pre grinder for Cement mill				
	WHR installation	15	24.5	57.45	
	RABH High efficiency fan	0.45	0.27		0.144Kwh/Ton of material

Formal Suggestion Scheme

Methodology for Identification of Improvement Projects

1. The Suggestion Awards Program is a plan to improve plant operations by appreciating new ideas.
2. It provides a way for you to serve the better by reducing the cost of running the plant operation, decrease the environmental impacts and energy consumption
3. The Proposal must result in more economy, efficiency, or improved services to the plant, or idea may be one which promotes safety, environment, energy, quality or benefits

Problem statement:

1. It is observed in Raw mill-2, the rejected material is low.

2.By making some modification in the reject circuit it will have more scope for the energy conservation.

3. In view of continuous operation of reject group, we have installed a bin for feeding on to the reject belt conveyor by placing the level sensors. **4.**So by placing the level sensors in reject bin the running hours of the reject group is reduced from on average 18 hours to 1 hr 55 min per day.

5.By stopping the reject group it also shown affect on reducing false air, the false air reduced from 31% to 27 %.

Result									
Particulars	Power savings	Running hours on	Saving						
	кwн	average	(KWH)						
Reject Bucket elevator	3.28	6335.1	20779.1						
Reject belt	1.01	6430.1	6468.7						
Total Savings	4.29	6357.7	27248.9						

Result								
Particulars	Power savings before	Power savings after	Saving					
	KWH	KWH	(KWH)					
False air reduced from 31% to 27 %	634	608	26.0					
Total Savings	0.22 KWH/Ton of material							

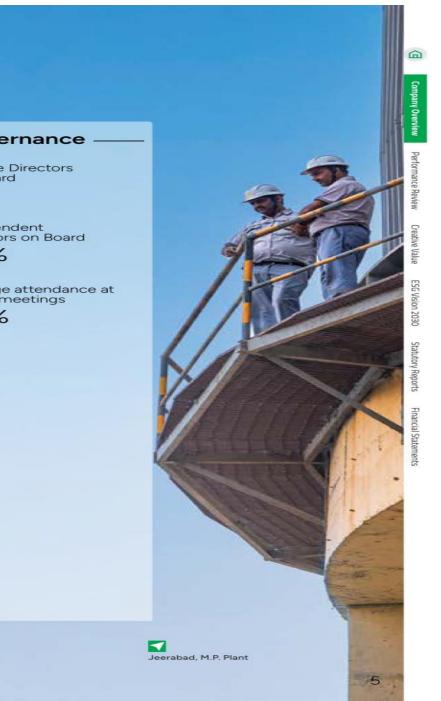
Innovative Improvement Projects

Statement: Optimization of Cooling tower fan running hours in cement mill section. 1. It is observed that the differential temperature of cooling tower water at day time is 4.3 deg on average. 2.It is Observed that the differential temperature of cooling tower water at Night time is 2.8 deg on average. 3. Cooling tower fan stopped from evening 6.00 P.M to morning 8.00 A.M. Without any temperature rise in the cement mill circuit. **4.**By stopping the cooling tower fan it shown affect on reducing power consumption.

Result								
Particulars	Power savings KWH	Running hours on average	Saving/ Annum (KWH)					
Cooling tower fan	4	3789	15156					
Total Savings in Rs	7.2	Rs/Kwh	109123					

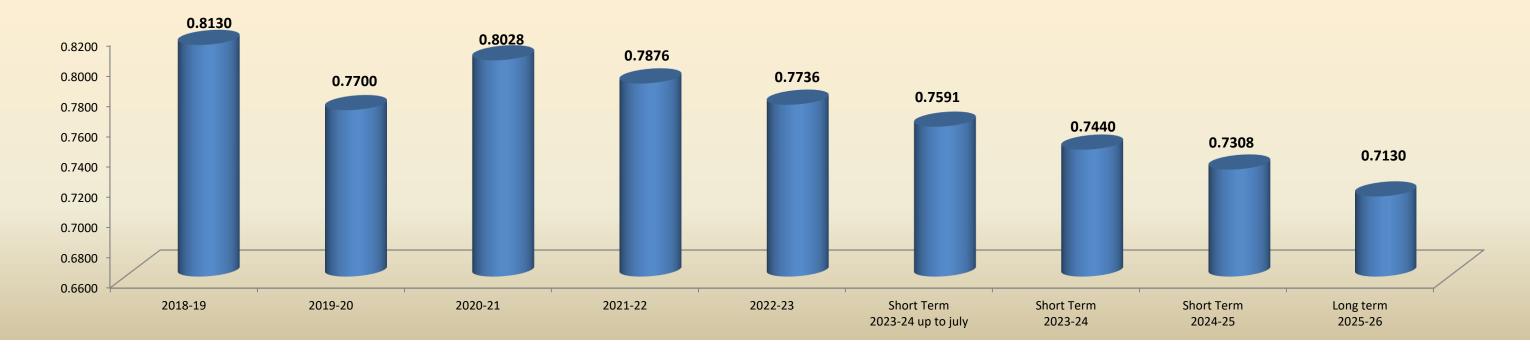
Problem statement:

It is observed in cement mill and packing plant section 4 compressors are running at present.
 By making some modification in the circuit it will have more scope for the energy conservation.
 In view of continuous loading and unloading of compressors, we have taken initiative for reducing the loading and unloading hours.
 There are 147 bends in the entire section including packing plant and cement mill section.
 By installing the new air line by minimising the bends in the compressor air line we have reduced the compressor loading and unloading time.
 By making the modification in the air line saved the loading and unloading hours 4184/annum and units of118894/annum.
 It shown a huge affect on the loading and unloading hours.


Particular	UOM	2021-22	2022-23	Difference		
Loading Hours	Hours	16055	14472	1583		
Unloading Hours	Hours	4207	1603	2604		
Units	KWH	611967	493072.8	118894		

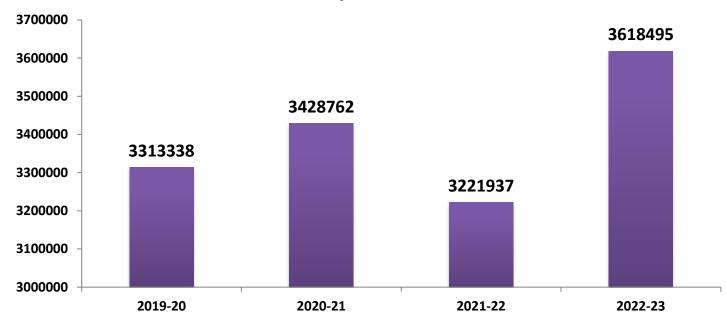
At Sagar Cements, we have always prioritized sustainability. We have been incorporating sustainable practices across our operations – right from improving our operational efficiency and environmental performance, minimising our carbon footprint and reducing waste to empowering people by helping them achieve a successful future for themselves, their families and the communities.

Steady perf			
Financial	- Operational	Environment	Social
Revenue (₹ in Lakhs)	Cement Produced (MT)	Specific Power Consumption (kWh/ton)	Employee Strength
2,22,954	47,60,282	77.79	2,907
2 40% YoY	2 32% YoY	(75.93 in FY22) 12%	CSR Spending (₹ in Lakhs)
EBITDA (₹ in Lakhs)	Green Energy	Reduction in GHG	306
15,318	Generated (MWh) 99,484	Emissions (%)	(255 Lakhs in FY22)
44% decline YoY	33,484 22% YoY	0.4%	Fatalities
PAT (₹ in Lakhs)	22% 101	Specific CO ₂ /Tonnes (in)	Zero
850	Capacity Utilisation	700.28 kgs	Lives Impacted
86% decline YoY	58%	(703.08 in FY22)	69,629
	(61% in FY22)	Waste Recycled (MT)	(42,000 in FY22)
	Recycled Water (KL)	10,24,507	
	80,653		
	105% YoY		
	Specific Water Consumption (Ltr/Ton)		
	112		
	91 Ltr/Ton in FY22		
	Thermal Substitution Rate (TSR)		
	3.31%		
	3,76% in FY22		



GHG Inventorisation, Scope-1 & 2&3

	201	8-19	201	9-20	202	0-21	202	1-22	202	2-23	Short 1 2023-24 u			Short Term 2023-24		Short TermLong term2024-252025-26		
SCOPE	CO2 [MT]	t CO2/T of Cem eq	CO2 [MT]	t CO2/T of Cem eq		t CO2/T of Cem eq	CO2 [MT]	t CO2/T of Cem eq	CO2 [MT]	t CO2/T of Cem eq	CO2 [MT]	t CO2/T of Cem eq	CO2 [MT]	t CO2/T of Cem eq	CO2 [MT]	t CO2/T of Cem eq	CO2 [MT]	t CO2/T of Cem eq
Scope-1	674508	0.788	653703	0.738	633400	0.762	689701	0.748	860310	0.721	274771	0.679	730217	0.645	769703	0.635	765422	0.619
Scope-2	306	0.0004	6100	0.0069	8836	0.0106	8862	0.0096	36741	0.0308	24377	0.0602	86400	0.0763	89992	0.0742	90152	0.0729
Scope-3	21029	0.025	21968	0.025	25349	0.030	27547	0.030	25904	0.022	7974	0.020	26137	0.023	26106	0.022	25933	0.021
Total	695843	0.813	681771	0.77	667585	0.803	726111	0.788	922955	0.774	307123	0.759	842754	0.744	885801	0.731	881507	0.713


Scope-1&2&3 t CO2/T of Cem eq

Utilization of Renewable Energy

Wind power-Units

Year	RVC Wind forms (100% Share)	Theni Wind forms 100%	Total RE (Gudipadu)	Plant Consumption	% of RE substution
FY 20-21	3428762	3116952	6545714	73177010	8.95
FY 21-22	3221937	3116952	6338889	78371950	8.09
FY 22-23	3618495	3116952	6735447	95635445	7.04

RVC Wind Firms

Technical Presentation – Gudipadu Unit

Net Zero Commitment

- 1. Efforts are on for increased use of Alternate raw materials replacing natural minerals like Red mud, Iron sludge, chrome sludge etc.
- 2. Efforts are on for increased use of Alternate fuels like, industrial waste, agri waste etc.
- 3. Green energy generation plants are installed for increasing ratio of Green energy by installing;
 - A. Waste heat recovery power plants.
 - B. Solar power plants.
 - C. Wind power plants.
- 4. Efforts are on to increase the blended cements volumes and also higher percentage of waste cementitious materials in the blended cements thereby reducing the clinker factor.
- Efforts are on in promoting / educating the customers about 5. the multilateral benefits of using the blended cements.
- Use of Photoelectric sensor for operating entire plant & colony 6. Lighting.
- 7. Plants are installed closer to the raw materials and closer to the markets to reduce the emission from transport vehicles.
- 8. Efforts are on to use Electric vehicles, hybrid vehicles to reduce the emission from transport vehicles.

Sagar Cements Ltd purchased Electrical powered Wheel Loader. The Sagar cements taken initiative 1st in cement industry by purchasing the electrical loader towards commitment of net zero emissions

Sagar Cements Gudipadu unit having total 200 no's meters connected to EnMS system and also generate auto report and same is communicated to concerned officials through auto generated mails.

Energy monitoring of equipment >or= 1% of total energy

Green Belt Development

40000

35000

33856

Thank You

Mail Id: vvprasad@sagarcements.in technicalservices@sagarcements.in jagadeeshk@sagarcements.in

30